Bundesamt für Kommunikation BAKOM

Abteilung Konzessionen und Frequenzmanagement

Formelsammlung für die Prüfung zur Zulassung Amateurfunk gültig ab 01.01.2025

		1		
Kirchhoffsche Regeln		U_i	Teilspannungen $i = 1, 2, 3, \dots, N$	V
	$U_1 + U_2 + \dots + U_N = 0$	I_i	Teilströme $i = 1, 2, 3, \dots, N$	A
		1	Τ	1
Ohmsches	$H = D \cdot I$	U	Spannung	V
Gesetz	$U = R \cdot I$	I	Strom	A
		R	Widerstand	Ω
Leistung und		U	Spannung	V
Arbeit	112	I	Stromstärke	A
	$P = U \cdot I = \frac{U^2}{R} = I^2 \cdot R$	R	Widerstand	Ω
	, A	P	Leistung	W
	$W = P \cdot t$	t	Zeit	S
		W	Arbeit	J
		1	T	
Effektiv- und Spitzenwerte bei	î 11 /5 11 1 1 1 1 1	Û	Spannungsamplitude	V
sinusförmiger	$\widehat{U} = U_{\text{eff}} \cdot \sqrt{2} = U_{\text{eff}} \cdot 1,414$	$U_{ m eff}$	Effektivspannung (RMS)	V
Wechsel- spannung	$U_{\rm ss} = 2 \cdot \widehat{U}$	$U_{\rm ss}$	Gesamtspannung	V
			T	1
Widerstände in Reihenschaltung	$R_{\rm G} = R_1 + R_2 + R_3 + \dots + R_N$	R_{G}	Gesamtwiderstand	Ω
Bei 2 Wider-	U_1 R_1 $U_G \cdot R_1$	R_i	Teilwiderstände $i = 1, 2, 3, \dots, N$	Ω
ständen (Spannungsteiler):	$\frac{U_1}{U_2} = \frac{R_1}{R_2} \qquad U_G = U_1 + U_2 \qquad U_1 = \frac{U_G \cdot R_1}{R_1 + R_2}$	U_{G}	Gesamtspannung	V
Widerstände in	$R_C = \frac{1}{1}$	$R_{\rm G}$	Gesamtwiderstand	Ω
Parallel- schaltung	$R_{\rm G} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$	R_i	Teilwiderstände $i = 1, 2, 3, \dots, N$	Ω
Bei 2 parallel		I_{G}	Gesamtstrom	A
geschalteten	$R_{\rm G} = \frac{R_1 \cdot R_2}{R_1 + R_2} \qquad \frac{I_2}{I_1} = \frac{R_1}{R_2}$	I_1	Strom durch R ₁	A
Widerstände gilt:	$R_1 + R_2$ I_1 R_2	I_2	Strom durch R ₂	A
		U_1	Spannung über R ₁	V
	$I_{G} = I_1 + I_2 \qquad \qquad U_1 = U_2$	U_2	Spannung über R ₂	V
		1	I	1 -
Widerstand von	n · 1	ρ	Spezifischer Widerstand	
Widerstand von Drähten	$R = \frac{\rho \cdot l}{A_{\rm D}}$	ρ <i>R</i>	Spezifischer Widerstand Widerstand	$\frac{\Omega mm}{m}$
	$R = \frac{\rho \cdot l}{A_{\rm D}}$		•	m
	į,	R	Widerstand	Ω
	$R = rac{ ho \cdot l}{A_{ m D}}$ $A_{ m D} = rac{d_{ m D}^2 \cdot \pi}{4} = r_{ m D}^2 \cdot \pi$	R	Widerstand Länge	m Ω m

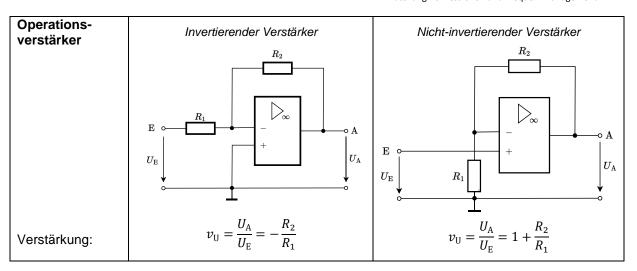
Bundesamt für Kommunikation BAKOM

Kapazitiver		$X_{\rm c}$	Kapazitiver Widerstand	Ω
Widerstand		C	Kapazität	F
	$X_{c} = \frac{1}{\omega \cdot C} = \frac{1}{2 \cdot \pi \cdot f \cdot C}$		·	
	$\omega \cdot c = 2 \cdot n \cdot j \cdot c$	f	Frequenz	Hz
		ω	Kreisfrequenz	1/s
Kondensatoren	1			
	$C_{\rm G} = \frac{1}{\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_2} + \dots + \frac{1}{C_N}}$	C_{G}	Gesamtkapazität	F
Reihenschaltung:	$\overline{C_1} + \overline{C_2} + \overline{C_3} + \cdots + \overline{C_N}$		·	
Parallelschaltung:	$C_G = C_1 + C_2 + C_3 + \ldots + C_N$	C_i	Teilkapazitäten	F
	o ₀		$i=1,2,3,\cdots,N$	1
			I	1 2
Kapazität eines		A	Kondensatorplattenfläche	m ²
Platten- kondensators	$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A}{d}$	d	Plattenabstand	m
Kondensators	$c = c_0 - c_r d$	С	Kapazität	F
		$\varepsilon_{\rm r}$	Permittivitätszahl	-
	$E = \frac{U_{\rm C}}{d}$	$arepsilon_0$	Elektrische Feldkonstante: 8,85E-12	As Vm
Elektrische	$E \equiv \frac{1}{d}$	E	Elektrische Feldstärke	VIII V/n
Feldstärke		L	Liektiische i elustarke	V / 11
Feldstarke		U_{C}	Spannung über C	V
Induktiver		U_{C}	Induktiver	ν
Induktiver (Blind-)		-		Ω
Induktiver	$X_{L} = \omega \cdot L = 2 \cdot \pi \cdot f \cdot L$	-	Induktiver	Ω H Vs
Induktiver (Blind-)	$X_{\rm L} = \omega \cdot L = 2 \cdot \pi \cdot f \cdot L$	$X_{ m L}$	Induktiver Blindwiderstand Induktivität	Ω H Vs A
Induktiver (Blind-)	$X_{L} = \omega \cdot L = 2 \cdot \pi \cdot f \cdot L$	$X_{ m L}$	Induktiver Blindwiderstand	$\begin{array}{c c} \Omega \\ H \\ \hline Vs \\ \hline A \\ Hz \end{array}$
Induktiver (Blind-)	$X_{L} = \omega \cdot L = 2 \cdot \pi \cdot f \cdot L$	X _L	Induktiver Blindwiderstand Induktivität Frequenz	$\begin{array}{c c} \Omega \\ H \\ \hline Vs \\ \hline A \\ Hz \end{array}$
Induktiver (Blind-)		X _L L f ω	Induktiver Blindwiderstand Induktivität Frequenz Kreisfrequenz	Ω H Vs A Hz 1/s
Induktiver (Blind-) Widerstand	$X_{L} = \omega \cdot L = 2 \cdot \pi \cdot f \cdot L$ $L_{G} = L_{1} + L_{2} + L_{3} + \dots + L_{N}$	X _L	Induktiver Blindwiderstand Induktivität Frequenz	$\begin{array}{c c} \Omega \\ H \\ \hline Vs \\ \hline A \\ Hz \end{array}$
Induktiver (Blind-) Widerstand	$L_{\rm G} = L_1 + L_2 + L_3 + \dots + L_N$	$egin{array}{c} X_{ m L} \\ L \\ \hline f \\ \omega \\ \end{array}$	Induktiver Blindwiderstand Induktivität Frequenz Kreisfrequenz	Ω H Vs A Hz 1/s
Induktiver (Blind-) Widerstand Induktivitäten Reihenschaltung:		X _L L f ω	Induktiver Blindwiderstand Induktivität Frequenz Kreisfrequenz Gesamtinduktivität	Ω H Vs A Hz 1/s
Induktiver (Blind-) Widerstand Induktivitäten Reihenschaltung: Parallelschaltung:	$L_{\rm G} = L_1 + L_2 + L_3 + \dots + L_N$	$egin{array}{c} X_{ m L} \\ L \\ \hline G \\ L_{ m G} \\ \end{array}$	Induktiver Blindwiderstand Induktivität Frequenz Kreisfrequenz Gesamtinduktivität Teilinduktivitäten $i=1,2,3,\cdots,N$	Ω H Vs A Hz 1/s
Induktiver (Blind-) Widerstand Induktivitäten Reihenschaltung: Parallelschaltung:	$L_{\rm G} = L_1 + L_2 + L_3 + \dots + L_N$	$egin{array}{c} X_{ m L} \\ L \\ \hline f \\ \omega \\ \end{array}$	Induktiver Blindwiderstand Induktivität Frequenz Kreisfrequenz Gesamtinduktivität Teilinduktivitäten	Ω H Vs A Hz 1/s
Induktiver (Blind-) Widerstand Induktivitäten Reihenschaltung: Parallelschaltung:	$L_{\rm G} = L_1 + L_2 + L_3 + \dots + L_N$	$egin{array}{c} X_{ m L} \\ L \\ \hline G \\ L_{ m G} \\ \end{array}$	Induktiver Blindwiderstand Induktivität Frequenz Kreisfrequenz Gesamtinduktivität Teilinduktivitäten $i=1,2,3,\cdots,N$	Ω H Vs A Hz 1/s

Bundesamt für Kommunikation BAKOM

		Abtellung k	-	
Magnetische Flussdichte		$B_{ m m}$	Magnetische Flussdichte	$\frac{T}{Vs}$
	$B_{\rm m} = \mu_{\rm r} \cdot \mu_0 \cdot H$	$\mu_{ m r}$	Relative Permeabilität	-
	$B_{\mathrm{m}} - \mu_{\mathrm{r}} \mu_{0} \Pi$	μ_0	Magnetische Feldkonstante (1,26E-6)	H/m
		Н	magnetische Feldstärke	A/m
	T	L	Induktivität	Н
Induktivität der Ringspule		$l_{\rm m}$	Umfang/Länge der Spule	m
(auch für lange	$L = \frac{\mu_0 \cdot \mu_r \cdot N_W^2 \cdot A_S}{l_m}$	$A_{\rm S}$	Querschnittsfläche der Spule	m ²
Zylinderspule wenn $l_{\rm m} > D$)	ι_{m}	N_{W}	Anzahl Windungen	-
Worm om 7 2)		μ_0	Magnetische Feldkonstante (1,26E-6)	H/m
Magnetische	$H = \frac{I \cdot N_{\rm W}}{l_{\rm m}}$	$\mu_{ m r}$	Relative Permeabilität	-
Feldstärke in einer Ringspule		I	Stromstärke	A
3-1		Н	magnetische Feldstärke	A/m
Transformator /		ü	Übersetzungsverhältnis	-
Übertrager	$N_{\rm P}$ $U_{\rm P}$ $I_{\rm S}$ $Z_{\rm P}$	N	Anzahl Windungen	-
	$\ddot{u} = \frac{N_{\rm P}}{N_{\rm S}} = \frac{U_{\rm P}}{U_{\rm S}} = \frac{I_{\rm S}}{I_{\rm P}} = \sqrt{\frac{Z_{\rm P}}{Z_{\rm S}}}$	U	Spannung	V
	P: Primär → S: Sekundär	I	Strom	Α
		Z	Impedanz	Ω
Netztrafo	$P_{\rm P} \approx 1.2 \cdot P_{\rm S}$	P_{P}	Primärleistung	W
	$A_{\mathrm{Fe}} pprox \sqrt{P_{\mathrm{P}}} \cdot \frac{\mathrm{cm}^2}{\sqrt{\mathrm{W}}}$	P_{S}	Sekundärleistung	W
		A_{Fe}	Eisenkernquerschnitt	cm ²
	$N_{\rm V} \approx \frac{42}{A_{\rm Fe}} \cdot \frac{{\rm cm}^2}{{ m V}}$	$N_{ m V}$	Windungszahl pro Volt	-/V
Belastbarkeit von Wicklungen		S	Stromdichte	$\frac{A}{mm^2}$
. J. T.	$I_{\text{max}} = S \cdot A_{\text{D}} \text{ mit } S \approx 2,5\text{A/mm}^2$	A_{D}	Drahtquerschnitt	mm ²
		I_{\max}	Maximale Stromstärke	Α

Bundesamt für Kommunikation BAKOM


Periodendauer	1		Periode	S
	$T = \frac{1}{f}$	f	Frequenz	Hz
Kreisfrequenz	$\omega = 2 \cdot \pi \cdot f$	ω	Kreisfrequenz	1/s
Phasen-	$\omega \cdot \lambda$	С	Lichtgeschwindigkeit	m/s
geschwindigkeit	$c = f \cdot \lambda = \frac{\omega \cdot \lambda}{2 \cdot \pi}$	λ	Wellenlänge	m

RC-Tiefpass / RC-Hochpass	$f_{\rm g} = \frac{1}{2 \cdot \pi \cdot R \cdot C}$	$f_{ m g}$	Grenzfrequenz (Frequenz am -3dB-Punkt)	Hz
No-Hochpass		R	Widerstand	Ω
RL-Tiefpass /	, R	С	Kapazität	F
RL-Hochpass	$J_{ m g} = rac{1}{2 \cdot \pi \cdot L}$	L	Induktivität	Н

Schwingkreis		f_0	Resonanzfrequenz	Hz
· ·	1	Q	Güte	-
	$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$	В	Bandbreite	Hz
Im Resonanzfall $X_{\rm C}=X_{\rm L}$ gilt: $Q=\frac{f_0}{B}=\frac{R_{\rm P}}{X_{\rm L}}=\frac{R_{\rm P}}{X_{\rm C}}=\frac{X_{\rm L}}{R_{\rm S}}=\frac{X_{\rm C}}{R_{\rm S}}$	$2 \cdot \pi \cdot \forall L \cdot C$	$R_{\rm P}$ $R_{\rm S}$	paralleler (P) serieller (S) Verlustwiderstand	Ω
		С	Kapazität	F
	Im Becongrafull V — V gilt:	L	Induktivität	Н
	-	$X_{ m L}$	Induktiver Blindwiderstand	Ω
	$Z = B = X_L - X_C - R_S - R_S$	X_{C}	Kapazitiver Blindwiderstand	Ω

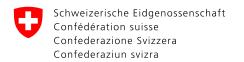
Transistor		B_{T}	Gleichspannungs- verstärkung	-
Für Gleichstrom	$B_{\mathrm{T}} = \frac{I_{\mathrm{C}}}{I}$	$I_{\mathrm{B,C,E}}$	Ruheströme	A
gilt:	$I_{ m B}$	ΔI	Differenzstrom	Α
	$I_{\mathrm{E}} = I_{\mathrm{C}} + I_{\mathrm{B}}$	ΔU	Differenzspannung	V
Für		$v_{ m I}$	Wechselstrom- verstärkung	-
Wechselstrom gilt:	$v_{ m I}=eta=rac{\Delta I_{ m C}}{\Delta I_{ m R}}$	β	Wechselstrom- verstärkung	-
	$ u_{ m U} = rac{\Delta U_{ m CE}}{\Delta U_{ m BE}}$	$v_{ m U}$	Wechselspannungs- verstärkung	-
B: Basis C: Kollektor		$v_{ m P}$	Leistungsverstärkung für Wechselstrom	-
E: Emitter	$v_{ ext{P}} = v_{ ext{U}} \cdot v_{ ext{I}}$	$\Delta U_{ m CE}$	Teilspannung (C zu E)	V
		$\Delta U_{ m BE}$	Teilspannung (B zu E)	V

Bundesamt für Kommunikation BAKOM

Innenwiderstand		Batterie $I_{ m K}$ $ _{R_{ m L}=0\Omega}$	$R_{\rm i}$	Innenwiderstand	Ω
			$R_{ m L}$	Lastwiderstand	Ω
	ΔU	$R_{\rm i}$	U_0	Leerlaufspannung	V
	$R_{\rm i} = \frac{\Delta U}{\Delta I}$	$\left(\begin{array}{c} \left(\begin{array}{c} \left. \right) \end{array} \right) & U_0 \mid_{R_{ m L}=\infty\Omega} \left. \begin{array}{c} \Gamma^{12} \Gamma^{12}$	I_{K}	Kurzschlussstrom	Α
	ΔI	ΔR	ΔR	Differenzwiderstand	Ω
		<u> </u>	ΔU	Differenzspannung	V
		L	ΔI	Differenzstrom	Α

Pegel	$u = 20 \cdot \log \left(\frac{U}{V} \right)$	$U = U_0 \cdot 10^{(u/20\text{dB})}$	U	Spannung	V	
	$u = 20 \operatorname{lg} \left(\overline{U_0} \right)$	$U = U_0 \cdot 10^{-3}$	P	Leistung	W	
	$n = 10 \cdot \log\left(\frac{P}{P}\right)$	$10 \cdot \lg\left(\frac{P}{P_0}\right) \qquad P = P_0 \cdot 10^{(p/10\text{dB})} \boxed{-}$	и	Spannungspegel	dB	
	$p = 10 \cdot \lg \left(\frac{P_0}{P_0} \right)$		p	Leistungspegel	dB	
Relativer Pegel:	Spannungs- oder Leistungspegel bezogen auf beliebige Werte von U_0 oder P_0 (z.B. 1 μ V, 1V, 1W, 1 μ W).					
Absoluter Pegel:	0dB (dBm, dBu) liegt bei P_0 = 1mW oder der Spannung U_0 = 775mV bei einem System mit R_1 = R_L =600 Ω vor.					
	Der absolute Leistungspegel ist auch bei Systemen mit anderen Impedanzen gleich.					

Dämpfung	$a = 20 \cdot \lg\left(\frac{U_1}{U_2}\right)$		U_1	Eingangsspannung	V
			U_2	Ausgangsspannung	V
	a = 10	$\cdot \lg \left(\frac{r_1}{P_2}\right)$	P_1	Eingangsleistung	W
Verstärkung/ Gewinn	$g = 20 \cdot \lg\left(\frac{U_2}{U_1}\right)$	$\frac{U_2}{U_1} = 10^{(g/20 \text{dB})}$	P_2	Ausgangsleistung	W
			а	Dämpfung	dB
	$g = 10 \cdot \lg \left(\frac{P_2}{P_1}\right)$	$\frac{P_2}{P_1} = 10^{(g/10\text{dB})}$	g	Verstärkung/ Gewinn	dB


Bundesamt für Kommunikation BAKOM

Wirkungsgrad	$\eta = \frac{P_{\rm ab}}{P_{\rm zu}}$	η	Wirkungsgrad	-
		$\eta_{\%}$	Wirkungsgrad	%
	$\eta_{\%} = rac{P_{ m ab}}{P_{ m zu}} \cdot 100\%$	$P_{\rm ab}$	abgegebene Leistung	W
	$P_{\rm ab} = P_{\rm zu} - P_{\rm V}$	P_{zu}	zugeführte Leistung	W
		P_{V}	Verlustleistung	W

Zwischen- frequenz	$f_{\rm ZF} = f_E \pm f_0 $	$f_{ m ZF}$	Zwischenfrequenz	Hz
	$f_{ZF} - IJE \perp JOI$ $f_{ZF} \qquad f_{ZF} \qquad f_{ZF}$ $f_{ZF} \qquad f_{E} \qquad f_{O} \qquad f_{S} \qquad f_{E}$	$f_{ m E}$	Empfangsfrequenz	Hz
Spiegelfrequenz	$f_{\rm S} = f_{\rm E} + 2 \cdot f_{\rm ZF} \text{ für } f_{\rm O} > f_{\rm E}$	f_0	Oszillatorfrequenz	Hz
	$f_{\rm S} = f_{\rm E} - 2 \cdot f_{\rm ZF} \; { m für} \; f_0 < f_{\rm E}$	$f_{ m S}$	Spiegelfrequenz	Hz

Thermisches		P_{N}	Rauschleistung	W
Rauschen		T_{K}	Temperatur	K
	$P_{\rm N} = k \cdot T_{\rm K} \cdot B$	В	Bandbreite	Hz
	_	$U_{\rm N}$	Rauschspannung	V
	$\Delta p_{\mathrm{N}} = 10 \cdot \lg \left(\frac{B_1}{B_2} \right)$	R	Widerstand	Ω
	(B_2)		Pegelunterschied der	
		$\Delta p_{ m N}$	Rauschleistungen in B_1	dB
	$U_{\rm N}=2\cdot\sqrt{P_{\rm N}\cdot R}$		$undB_2$	
		k	Boltzmann-Konstante, (1,38E-23)	$\frac{Ws}{K}$

Signal-Rausch-	$SNR = 10 \cdot \lg\left(\frac{P_{S}}{P_{N}}\right)$	SNR	Signalrauschverhältnis	dB
verhältnis	$SNR = 10 \cdot \lg \left(\frac{1}{P_N} \right)$	P_{S}	Signalleistung	W
	$SNR = 20 \cdot 10^{-4} \binom{U_{\rm S}}{10^{-4}}$	P_{N}	Rauschleistung	W
	$SNR = 20 \cdot \lg\left(\frac{U_{\rm S}}{U_{\rm N}}\right)$	$U_{\rm S}$	Signalspannung	V
Daysahzahl	(P_{S})	$U_{\rm N}$	Rauschspannung	V
Rauschzahl	$F = rac{\left(rac{P_{ m S}}{P_{ m N}} ight)_{ m Eingang}}{\left(rac{P_{ m S}}{P_{ m N}} ight)_{ m Ausgang}}$	F	Rauschzahl	-
	$\left(\frac{2}{P_{\rm N}}\right)_{\rm Ausgang}$	$n_{ m F}$	Logarithmische Rauschzahl	dB
	$n_{\mathrm{F}} = 10 \cdot \lg(F)$,	•
	$n_{\rm F} = SNR_{\rm Eingang} - SNR_{\rm Ausgang}$			

Bundesamt für Kommunikation BAKOM

ERP/EIRP		а	Kabelverluste	dB
	$p_{ ext{ERP}} = p_{ ext{S}} - a + g_{ ext{d}}$ $P_{ ext{ERP}} = P_{ ext{S}} \cdot 10^{((g_{ ext{d}} - a)/10 ext{dB})}$	$g_{ m d}$	Antennengewinn bezogen auf den Halbwellendipol	dB
		$p_{ m S}$	Sendeleistungspegel	dBm
	$p_{\mathrm{EIRP}} = p_{\mathrm{ERP}} + 2.15 \mathrm{~dB}$ $P_{\mathrm{EIRP}} = 1.64 \cdot P_{\mathrm{ERP}}$	$p_{ m ERP}$	Effektiver Strahlungsleistungspegel bezogen auf den Halbwellendipol im Freiraum	dBm
	$P_{\text{EIRP}} = P_{\text{S}} \cdot 10^{((g_{\text{d}} - a + 2,15 \text{ dB})/10 \text{dB})}$	$p_{ m EIRP}$	Effektiver Strahlungsleistungspegel bezogen auf den isotropen Strahler im Freiraum	dBm
		P_{S}	Leistung am Sender	W
		P_{ERP}	Effective Radiated Power	W
		P_{EIRP}	Effective Isotropic Radiated Power	W

Gewinnfaktor von Antennen	$G = 10^{\frac{g}{10}}$ $g = 10 \cdot \lg(G)$ $G_i = G_d \cdot 1,64$ $g_i = g_d + 2,15 dB$	G	Antennengewinnfaktor i: Isotropstrahler (Strahlt in alle Richtungen gleich) d: Halbwellendipol	-
		g	Gewinn	dB
	Halbwellendipol: $G_{\rm i}=1,64$ $g_{\rm i}=2,15~{ m dBi}$	$g_{ m i}$	Gewinn bezogen auf den Isotropstrahler	dB
	λ /4-Vertikalantenne: $g_{\rm i} = 3,28 \qquad \qquad g_{\rm i} = 5,15~{\rm dBi}$	$g_{ m d}$	Gewinn bezogen auf den Halbwellendipol	dB
Feldstärke im Fernfeld einer	$\sqrt{30.0 \cdot P_{A} \cdot G}$ $\sqrt{30.0 \cdot P_{\text{FIRP}}}$	d	Abstand zur Antenne	m
Antenne	$E = \frac{\sqrt{30\Omega \cdot P_{A} \cdot G_{i}}}{d} = \frac{\sqrt{30\Omega \cdot P_{EIRP}}}{d}$	Е	Elektrisches Feld	V/m
	Gilt für Freiraum- λ	λ	Wellenlänge	m
	Gilt für Freiraum- $d > \frac{\lambda}{2 \cdot \pi}$ ausbreitung falls:	P_{A}	Leistung an der Antenne	W

Bundesamt für Kommunikation BAKOM

Amplituden-	\widehat{U}_{lack}	$m_{ m AM}$	Modulationsgrad	-
modulation	$m_{ m AM} = rac{\widehat{U}_{ m mod}}{\widehat{U}_{ m T}}$	$\widehat{U}_{\mathrm{mod}}$	Modulationsspannungs- amplitude	V
	$B_{\text{AM}} = 2 \cdot f_{\text{NFmax}}$	\widehat{U}_{T}	Trägerspannungs- amplitude	V
	The state of the s	B_{AM}	AM-Bandbreite	Hz
	$\bar{P}_{AM} = P_{T} + 2 \cdot P_{SSB}$	$f_{ m NFmax}$	Maximalfrequenz des Niederfrequenzsignals	Hz
	(m 2)	\bar{P}_{AM}	Mittlere Leistung	W
	$\bar{P}_{\rm AM} = \left(1 + \frac{m_{\rm AM}^2}{2}\right) P_{\rm T}$	P_{T}	Leistung des Trägers	W
	2)	$P_{ m SSB}$	Seitenbandsignalleistung	W
SSB		$B_{\rm SSB}$	SSB-Bandbreite	Hz
	$B_{\rm SSB} = f_{ m NFmax} - f_{ m NFmin}$	$f_{ m NFmin}$	Minimalfrequenz des Niederfrequenzsignals	Hz

Frequenz- modulation	$m_{ ext{FM}} = rac{\Delta f_{ ext{T}}}{\epsilon}$	$m_{ m FM}$	Modulationsgrad	-
Inodulation	$f_{ m mod}$	Δf_{T}	Frequenzhub	Hz
	$B_{\rm FM} = 2 \cdot (\Delta f_{\rm T} + f_{\rm mm})$	$f_{ m mod}$	Modulationsfrequenz	Hz
	Carson-Bandbreite B _{FM} (Ungefähre FM-	$B_{ m FM}$	FM-Bandbreite	Hz
	Bandbreite) enthält etwa 99% der Gesamtleistung eines FM-Signals.	$f_{ m mm}$	Modulationsmaximal- frequenz	Hz

(Nyquist-) Abtasttheorem	£ > 2. £	$f_{ m abtast}$	Abtastrate	Hz
	$f_{ m abtast} > 2 \cdot f_{ m max}$	$f_{\rm max}$	Maximalfrequenz des abgetasteten Signals	Hz

Datenüber-		R_{D}	Datenübertragungsrate	bit/s
tragungsrate,	$R_{\mathrm{D}} = R_{\mathrm{S}} \cdot n$	$R_{\rm S}$	Symbolrate	Baud
Symbolrate		n	Bits pro Symbol	-

Verkürzungs-		l_{G}	Geometrische Länge	m
faktor von HF-Leitungen		$l_{ m E}$	Elektrische Länge	m
	$l_{ m G}$ c 1	$k_{ m v}$	Verkürzungsfaktor	-
	$k_{ m v}=rac{{ m d}}{l_{ m E}}=rac{{ m c}_0}{c_0}pproxrac{{ m \sqrt{arepsilon_{ m r}}}}{\sqrt{arepsilon_{ m r}}}$	$\varepsilon_{ m r}$	Permittivitätszahl	-
		С	Lichtgeschwindigkeit im Material	m/s
		c_0	Lichtgeschwindigkeit im Vakuum (3E8 m/s)	m/s

mit $a/_d > 2.5$

Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation UVEK

Bundesamt für Kommunikation BAKOM

Dielektrizitätszahl

Wellen- widerstand	L'	Z_0	Wellenwiderstand der Leitung	Ω
	$Z_0 = \sqrt{\frac{L'}{C'}}$	L'	Induktivitätsbelag	H/m
HF-Leitungen	V	<i>C'</i>	Kapazitätsbelag	F/m
Koaxiale Leitungen		Z_0	Wellenwiderstand der Leitung	Ω
_	$Z_0 = \frac{60\Omega}{\sqrt{\varepsilon_r}} \cdot \ln\left(\frac{D}{d_i}\right)$	D	Innendurchmesser Aussenleiter	m
		$d_{ m i}$	Durchmesser des Innenleiters	m
Symmetrische		а	Mittenabstand der Leiter	m
Zweidraht- leitungen	$Z_0 = \frac{120\Omega}{\sqrt{\varepsilon_r}} \cdot \ln\left(\frac{2 \cdot a}{d}\right)$	d	Durchmesser der Leiter	m
	$z_0 - \sqrt{\varepsilon_{\rm r}}$ in d		Relative	

Viertelwellen- transformator		Z_0	Wellenwiderstand der Leitung	Ω
	$Z_0 = \sqrt{Z_{\rm E} \cdot Z_{\rm A}}$	Z_{A}	Ausgangsschein- widerstand	Ω
		Z_{E}	Eingangsschein- widerstand	Ω

Stehwellen- verhältnis/	$s = rac{U_{ m max}}{U_{ m min}} = rac{\widehat{U}_{ m v} + \widehat{U}_{ m r}}{\widehat{U}_{ m v} - \widehat{U}_{ m r}}$	S	Stehwellenverhältnis	-
VSWR	1 + r	r	Reflexionsfaktor	-
	$s = \frac{1+ r }{1- r }$	Z_0	Wellenwiderstand der HF Leitung	Ω
	$r = \frac{R_{\rm L} - Z_0}{R_{\rm L} + Z_0}$	$R_{ m L}$	Abschlusswiderstand	Ω
	$s = \frac{R_L}{Z_0}$ falls $R_L > Z_0$	$\widehat{U}_{ m v}$	Amplitude der hinlaufenden Welle	V
	$S = \frac{1}{Z_0}$ rais $R_L > Z_0$	\widehat{U}_{r}	Amplitude der rücklaufenden Welle	V
	Z_0	$P_{ m v}$	Hinlaufende Leistung	W
	$s = \frac{Z_0}{R_L}$ falls $R_L < Z_0$	$P_{ m r}$	Rücklaufende Leistung	W
	$s-1$ \widehat{U}_r P_r	$P_{ m L}$	Leistung an R _L	W
	$ r = \frac{s-1}{s+1} = \frac{\widehat{U}_{r}}{\widehat{U}_{v}} = \sqrt{\frac{P_{r}}{P_{v}}}$	U _{max} Maximale Spannung aut der HF Leitung	Maximale Spannung auf der HF Leitung	V
	$P_{\rm r} = P_{\rm v} \cdot r^2$ falls $P_{\rm r} \neq P_{\rm v}$	U_{\min}	Minimale Spannung auf der HF Leitung	V
	$P_{\rm L} = P_{\rm v} \cdot \left(1 - r^2\right)$	$a_{\rm x}$	Dämpfung	dB
Dämpfung durch Fehlanpassung:	$a_{\rm x} = -10 \cdot \lg(1-r^2)$			

Bundesamt für Kommunikation BAKOM

Höchste brauchbare Frequenz	f		Höchste brauchbare Frequenz (Maximal usable frequency)	Hz
	$f_{\rm MUF} \approx \frac{f_{\rm c}}{\sin(\alpha)}$	$f_{ m c}$	Höchste ionosphären- reflektierte Frequenz bei senkrechtem Strahl	Hz
	$f_{\text{opt}} = 0.85 \cdot f_{\text{MHF}}$	$f_{ m opt}$	Optimale Frequenz	Hz
	- Se- MOP	α	Abstrahlwinkel der Antenne relativ zur Erdoberfläche	o

Empfindlichkeit von Mess-		U_{i}	Spannung am System bei Vollausschlag	V
systemen	$_{r}$ $R_{\rm i}$ 1	$I_{ m i}$	Strom durch das System bei Vollausschlag	A
	$E_{M} = \frac{U_{i}}{U_{i}} = \frac{U_{i}}{I_{i}}$	$R_{\rm i}$	Innenwiderstand des Systems	Ω
		E_{M}	Empfindlichkeit	Ω/V

Messbereichs- erweiterung	$II - II.$ $(n-1) \cdot II.$	$R_{ m V}$	R _V Vorwiderstand	Ω
	$R_{\rm V} = \frac{U - U_{\rm M}}{I_{\rm M}} = \frac{(n-1) \cdot U_{\rm M}}{I_{\rm M}}$	U_{M}	Spannungsmessbereich	V
Spannungs-	$R_{ m V} = (n-1) \cdot R_{ m M}$ Messgerat $R_{ m M}$ $R_{ m V}$	I_{M}	Strom bei Vollausschlag	A
messer		U	Neuer Spannungs- messbereich	V
	Messgerät Messgerät	$R_{\rm S}$	Shuntwiderstand	Ω
Strommesser	$R_{S} = \frac{R_{M} \cdot I_{M}}{I - I_{M}} = \frac{R_{M}}{n - 1} \xrightarrow{I_{M}} A \xrightarrow{R_{M}}$	R_{M}	Messgerätewiderstand	Ω
	$R_{ m S}$	I	Neuer Strommessbereich	A

Relativer maximaler		F_{W}	relativer maximaler Fehler	%
Fehler $F_{ m W}=\pm$	$F_{ m W}=\pmrac{G}{100}\cdotrac{W_{ m E}}{W_{ m M}}$	$W_{\rm E}$	Endwert des Messbereichs	-
	100 W _M	W_{M}	abgelesener Wert	-
		G	Genauigkeitsklasse des Messinstruments	-

Bundesamt für Kommunikation BAKOM

Abteilung Konzessionen und Frequenzmanagement

Tabelle 1:Spezifischer elektrischer Widerstand (p)

Material	Silber	Kupfer	Gold	Aluminium	Eisen
$ ho$ in $rac{\Omega ext{mm}^2}{ ext{m}}$ bei 20°C	0,0159	0,0178	0,022	0,030	0,17

Tabelle 2: Relative Dielektrizitätszahl ε_r

Dielektrikum	Luft (trocken)	Voll-PE (Polyäthylen)	Schaum-PE	PTFE (Teflon)
$arepsilon_{ m r}$	1,00059	2,29	1,5	2,0

Tabelle 3: (Physikalische) Konstanten

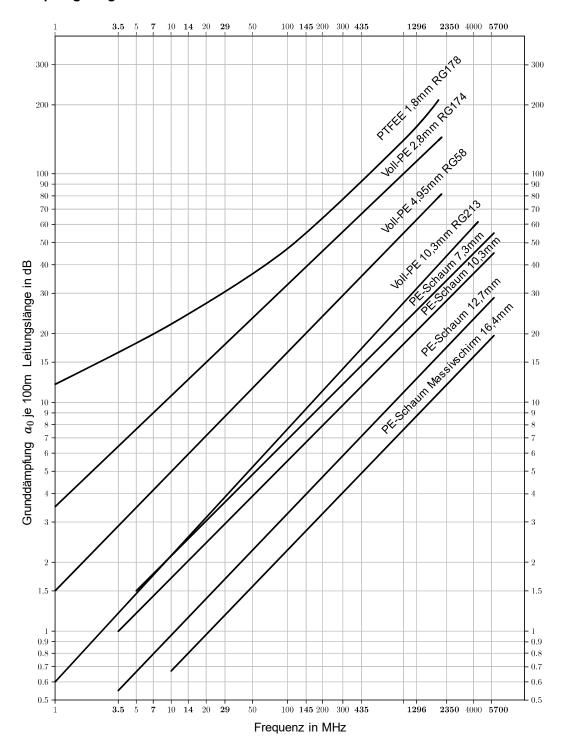
c_0	Lichtgeschwindigkeit im Vakuum	299792458	m·s ⁻¹
e	Eulersche Zahl	2,71828	
ε_0	Elektrische Feldkonstante $1/(\mu_0 c_0^2)$	8,85E-12	$A \cdot s \cdot V^{-1} \cdot m^{-1}$
k	Boltzmann-Konstante	1,38E-23	$J \cdot K^{-1} = W \cdot s \cdot K^{-1}$
μ_0	Magnetische Feldkonstante $4\pi/10^7$	1,26E-6	H·m ^{−1}
π	Kreiszahl	3,14159	
T_0	Absoluter Nullpunkt 0°K	-273,15	°C
Z_0	Wellenwiderstand im Vakuum $\sqrt{\mu_0/\varepsilon_0}=120\pi$	377	Ω

Wertkennzeichnung durch Buchstaben

f	Femto	10^{-15}
р	Pico	10^{-12}
n	Nano	10-9

μ	Mikro	10^{-6}
m	Milli	10^{-3}
С	Zenti	10-2

k	Kilo	10^{3}
М	Mega	10^{6}
G	Giga	10 ⁹


Т	Tera	10 ¹²
Р	Peta	10 ¹⁵

Pegel	Leistungs- verhältnis	Spannungs- verhältnis
-30 dB	0,001	0,03
-20 dB	0,01	0,1
-10 dB	0,1	0,32
-6 dB	0,25	0,5
-3 dB	0,5	0,71
-1 dB	0,8	0,89
0 dB	1	1
1 dB	1,26	1,12
3 dB	2	1,41
6 dB	4	2
10 dB	10	3,16
20 dB	100	10
30 dB	1000	31,62

Kennfarben für Widerstände			
Kenn- farbe	Wert	Multi- plikator	Toleranz
Silber	-	10-2	±10%
Gold	-	10 ⁻¹	±5%
schwarz	0	10-0	-
braun	1	10 ¹	±1%
rot	2	10 ²	±2%
orange	3	10 ³	-
gelb	4	104	-
grün	5	10 ⁵	±0,5
blau	6	10 ⁶	±0,25%
violett	7	10 ⁷	±0,1%
grau	8	108	-
weiss	9	10 ⁹	-
keine	-	-	±20%

Bundesamt für Kommunikation BAKOMAbteilung Konzessionen und Frequenzmanagement

Kabeldämpfungsdiagramm

Dämpfung gebräuchlicher Koaxialleitungen in Abhängigkeit von der Betriebsfrequenz für eine Länge von 100m

Gefundene Fehler bitte an kf-fk@bakom.admin.ch melden – Danke!

(Am besten mit einer Word-Datei mit aktivierter «Änderungen nachverfolgen» oder kommentierter pdf-Datei.)